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A Brief Introduction of the IMO

The International Mathematical Olympiad (IMO) is for pre-university students
and is the oldest of the International Science Olympiads. The first IMO was
held in Romania in 1959. It has since been held annually, except in 1980.
About 100 countries send teams of up to six students.

1 IMO is considered to be the most important and influential mathematical
competition at the secondary level.

2 It is a two-day contest, 4.5 hours per day.

3 The paper consists of 6 problems, 3 per day.

4 Each problem worth 7 points, thus the full score is 42 points.
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Problems in the IMO

The four basic areas.

1 Algebra

2 Combinatorics

3 Geometry

4 Number Theory
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Selection Process in Hong Kong

1 HKIMO Prelim (Coming up on 29th May) (Weight = 1)

2 Qualified students are invited to the IMO Training

3 Selection Test 1 (August) (Weight = 2)

4 Selection Test 2 (October) (Weight = 3)

5 CHKMO (December) (Weight = 3)

6 APMO (March) (Weight = 4)
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Our 2010 Team Members and Reserved Team Members

2010 Team Members

Ching Tak Wing Queen’s College
Hung Ka Kin Diocesan Boys’ School (Caltech ’14)
Chung Ping Ngai LaSalle College (MIT ’14)
Tam Ka Yu Queen’s College
Yu Tak Hei LaSalle College
Yip Hok Pan Ying Wa College

2010 Reserved Team Members

Lo Jing Hoi LaSalle College
Kwok Hoi Kit LaSalle College
Li Yau Wing Ying Wa College
Wong Ching (F) PLK Centenary Li Shiu Chung Mem College
Chan Kwun Tat SKH Lam Woo Mem Sec School
Wo Bar Wai Barry LaSalle College
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What’s Next

1 Primes

2 Euclidean Algorithm

3 Modular Arithmetic

4 Fermat’s Little Theorem and the Cubing Lemma

5 Dirichlet’s Theorem and the Chebotarev Density Theorem

6 Fermat’s Last Theorem
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Primes
The proof uses reductio ad absurdum.

Definition

A positive integer is a prime number if it is only divisible by itself and 1. (Note
1 is NOT a prime number.)

Theorem

There is no largest prime number, that is, there are infinitely many primes.

Proof.

1 Suppose p were the largest prime number.

2 Let q be the product of the first p numbers.

3 Then q + 1 is not divisible by any of them.

4 Thus q + 1 is also prime and greater than p.
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Prime Number Theorem

A Natural Question

Can we do better?

The question is answered by the Prime Number Theorem.

Definition

Let π(x) denote the number of primes less than x . For example, π(10) = 4
since there are four primes, viz. 2, 3, 5, 7 less than 10. Also, π(100) = 25.

Theorem (Prime Number Theorem)

lim
x→∞

π(x)
x

ln x

= 1.

In other words, when x is big,

π(x) ∼ x

ln x
.
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Euclidean Algorithm

Euclidean Algorithm is basically repeated use of division algorithm and it is very
handy in finding the gcd of two integers a and b, denoted by gcd(a, b).

Example

Find gcd(121, 7).

Solution.

Write 121 = 7× 17 + 2, then we have:

121 = 17× 7 + 2

7 = 3× 2 + 1

2 = 2× 1 + 0

(121, 7) is the least non-zero remainder, which is 1, thus (121, 7) = 1.
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Euclidean Algorithm

Theorem

For a, b ∈ Z, with gcd(a, b) = 1 then there exists x , y ∈ Z such that

ax + by = 1.

For the previous example, in order to find the x , y in the theorem. We run the
algorithm backwards

Solution.

1 = 7− 3× 2

= 7− 3× (121− 7× 17)

= 7− 3× 121 + 51× 7

= 52× 7− 3× 121.

Note that we replace 2 by 121− 7× 17 in the second line. Hence x , y are
−3, 52 respectively.
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Euclidean Algorithm

Example (IMO 1959 Q1)

Prove that 21n+4
14n+3

is irreducible for every natural number n.

Proof.

It suffices to prove that gcd(21n + 4, 14n + 3) = 1 for all n.
Applying the Euclidean algorithm, we have:

21n + 4 = 1× (14n + 3) + (7n + 1)

14n + 3 = 2× (7n + 1) + 1

7n + 1 = (7n + 1)× 1 + 0

Thus gcd(21n + 4, 14n + 3) = 1 for all n.
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Modular Arithmetic

Definition

a ≡ b (mod m) iff m | a− b, in which we say that a is congruent to b modulo
m.

Example

In congruence notation, we have

1 3 ≡ 1 (mod 2),

2 7 ≡ 4 ≡ 1 ≡ −2 ≡ 10 (mod 3).

Notice that n is even iff n ≡ 0 (mod 2).
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Modular Arithmetic

Theorem (Basic Properties of Congruence)

Suppose a, b, c, d ,m ∈ Z, we have:

1 a ≡ b (mod m), b ≡ c (mod m)⇒ a ≡ c (mod m)

2 a ≡ b (mod m), c ≡ d (mod m)⇒ a± c ≡ b ± d (mod m).

3 a ≡ b (mod m), c ≡ d (mod m)⇒ ac ≡ bd (mod m).

4 ab ≡ ac (mod m), gcd(a,m) = 1⇒ b ≡ c (mod m).
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Modular Arithmetic

Example (IMO 1964 Q1)

(a) Find all natural numbers n for which 7 divides 2n − 1.
(b) Prove that there is no natural number n for which 7 divides 2n + 1.

Proof.

(a) Since 23 ≡ 8 ≡ 1 (mod 7). This means 2n (mod 7) is periodic with period
3. It suffices to consider three cases

1 If n = 3k, then 2n − 1 ≡ 23k − 1 ≡ (23)k − 1 ≡ 1k − 1 ≡ 1− 1 ≡ 0
(mod 7).

2 If n = 3k + 1, then 2n − 1 ≡ 23k+1 − 1 ≡ 2×23k − 1 ≡ 2− 1 ≡ 1 (mod 7).

3 If n = 3k + 2, then 2n − 1 ≡ 4×23k − 1 ≡ 4− 1 ≡ 3 (mod 7).

4 Therefore, we conclude that 2n − 1 is divisible by 7 if and only if n = 3k,
that is n ≡ 0 (mod 3).

5 The proof of (b) is similar to (a) and will be left as exercise for the
audience.
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Modular Arithmetic

Example (HKIMO Prelim Shortlist)

a1y + a2z + a3w = 0

a4x + a5z + a6w = 0

a7x + a8y + a9w = 0

a10x + a11y + a12z = 0,

where ai ∈ {1,−1} for 1 ≤ i ≤ 12. Find the probability that

(x , y , z ,w) = (0, 0, 0, 0) is the only solution to the system.

Idea.

It suffices to determine the probability that the matrix

A =


0 a1 a2 a3

a4 0 a5 a6

a7 a8 0 a9

a10 a11 a12 0

 , ai ∈ {1,−1}

is invertible. i.e. det(A) 6= 0.
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Modular Arithmetic

Idea.

I am going to first deal with a special case and then reduce the general case to
this special case.

Special Case.

Suppose ai = 1 for all i , then the system has only the trivial solution because

det


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 = −3 6= 0.
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Modular Arithmetic

Reducing the general case to the special case.

Now, since −1 ≡ 1 (mod 2). We have
0 a1 a2 a3

a4 0 a5 a6

a7 a8 0 a9

a10 a11 a12 0

 ≡


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 (mod 2).

Therefore, we have:

det


0 a1 a2 a3

a4 0 a5 a6

a7 a8 0 a9

a10 a11 a12 0

 ≡ det


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 ≡ −3 ≡ 1 (mod 2),

which is odd, and hence non-zero. Therefore, the system always has only the
trivial solution for all choices of ai . Hence the probability is 1.
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Modular Arithmetic

Example (HKIMO 2009 Selection Test 1)

Find the total number of solutions to the following system of equations:

a2 + bc ≡ a (mod 37)

b(a + d) ≡ b (mod 37)

c(a + d) ≡ c (mod 37)

bc + d2 ≡ d (mod 37)

ad − bc ≡ 1 (mod 37)
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Modular Arithmetic

Proof.

1 Let

A =

(
a b
c d

)
.

2 Then the first 4 equations of the system system is equivalent to

A2 ≡ A (mod 37) ,

3 and the last equation means the matrix A is invertible .

4 This gives A = I immediately. Hence the solution is unique.
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Fermat’s Little Theorem

Theorem (Fermat’s Little Theorem)

Let p be a prime, then we have

ap ≡ a (mod p) for all a ≥ 0.

Proof.

Fix a prime p, we proceed by induction on a.

1 For a = 0, we have 0p − 0 ≡ 0 (mod p).

2 Assume ap ≡ a (mod p) some a > 0, we have

(a + 1)p =

p∑
k=0

(
p

k

)
ak ≡ ap + 1 (mod p).

Note that
(
p
k

)
≡ 0 (mod p) for 1 ≤ k ≤ p − 1.

3 Hence (a + 1)p ≡ ap + 1 ≡ a + 1 (mod p) by the induction hypothesis.

4 Therefore S(a + 1) is true and we are done by induction.
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Fermat’s Little Theorem

Theorem

Let p be a prime, then we have

(a + b)p ≡ ap + bp (mod p) for all a, b ∈ Z

Proof.

1 By Fermat’s little theorem, we have ap ≡ a (mod p), and

2 bp ≡ b (mod p).

3 By Fermat’s little theorem again, we have (a + b)p ≡ a + b ≡ ap + bp

(mod p). Done.
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Fermat’s Little Theorem

Example (HKIMO 2008 Prelim Q20)

For (1 + x)38 = a0 + a1x + ...+ a38x38. Let N1 = #{ai | ai ≡ 1 (mod 3)},
N2 = #{ai | ai ≡ 2 (mod 3)}. Compute N1 − N2.

Understanding the problem by trying a few small cases.

1 First of all, we notice that we are only interested in the coefficients mod 3
and we therefore look at (1 + x)n mod 3.

2 For n = 3, (1 + x)3 ≡ 1 + x3 (mod 3). That means N1 = 2 and N2 = 0.

3 For n = 9, (1 + x)9 ≡ (1 + x3)3 ≡ 1 + (x3)3 ≡ 1 + x9 (mod 3). That
means N1 = 2 and N2 = 0.

4 (1 + x)10 ≡ (1 + x)(1 + x)9 ≡ (1 + x)(1 + x9) ≡ 1 + x + x9 + x10

(mod 3). That means N1 = 4 and N2 = 0.

Dr. Koopa Koo Puzzles, Surprises, IMO, and Number Theory



Fermat’s Little Theorem

Example (HKIMO 2008 Prelim Q20)

For (1 + x)38 = a0 + a1x + ...+ a38x38. Let N1 = #{ai | ai ≡ 1 (mod 3)},
N2 = #{ai | ai ≡ 2 (mod 3)}. Compute N1 − N2.

Understanding the problem by trying a few small cases.

1 First of all, we notice that we are only interested in the coefficients mod 3
and we therefore look at (1 + x)n mod 3.

2 For n = 3, (1 + x)3 ≡ 1 + x3 (mod 3). That means N1 = 2 and N2 = 0.

3 For n = 9, (1 + x)9 ≡ (1 + x3)3 ≡ 1 + (x3)3 ≡ 1 + x9 (mod 3). That
means N1 = 2 and N2 = 0.

4 (1 + x)10 ≡ (1 + x)(1 + x)9 ≡ (1 + x)(1 + x9) ≡ 1 + x + x9 + x10

(mod 3). That means N1 = 4 and N2 = 0.

Dr. Koopa Koo Puzzles, Surprises, IMO, and Number Theory



Fermat’s Little Theorem

Example (HKIMO 2008 Prelim Q20)

For (1 + x)38 = a0 + a1x + ...+ a38x38. Let N1 = #{ai | ai ≡ 1 (mod 3)},
N2 = #{ai | ai ≡ 2 (mod 3)}. Compute N1 − N2.

Understanding the problem by trying a few small cases.

1 First of all, we notice that we are only interested in the coefficients mod 3
and we therefore look at (1 + x)n mod 3.

2 For n = 3, (1 + x)3 ≡ 1 + x3 (mod 3). That means N1 = 2 and N2 = 0.

3 For n = 9, (1 + x)9 ≡ (1 + x3)3 ≡ 1 + (x3)3 ≡ 1 + x9 (mod 3). That
means N1 = 2 and N2 = 0.

4 (1 + x)10 ≡ (1 + x)(1 + x)9 ≡ (1 + x)(1 + x9) ≡ 1 + x + x9 + x10

(mod 3). That means N1 = 4 and N2 = 0.

Dr. Koopa Koo Puzzles, Surprises, IMO, and Number Theory



Fermat’s Little Theorem

Example (HKIMO 2008 Prelim Q20)

For (1 + x)38 = a0 + a1x + ...+ a38x38. Let N1 = #{ai | ai ≡ 1 (mod 3)},
N2 = #{ai | ai ≡ 2 (mod 3)}. Compute N1 − N2.

Understanding the problem by trying a few small cases.

1 First of all, we notice that we are only interested in the coefficients mod 3
and we therefore look at (1 + x)n mod 3.

2 For n = 3, (1 + x)3 ≡ 1 + x3 (mod 3). That means N1 = 2 and N2 = 0.

3 For n = 9, (1 + x)9 ≡ (1 + x3)3 ≡ 1 + (x3)3 ≡ 1 + x9 (mod 3). That
means N1 = 2 and N2 = 0.

4 (1 + x)10 ≡ (1 + x)(1 + x)9 ≡ (1 + x)(1 + x9) ≡ 1 + x + x9 + x10

(mod 3). That means N1 = 4 and N2 = 0.

Dr. Koopa Koo Puzzles, Surprises, IMO, and Number Theory



Fermat’s Little Theorem

Example (HKIMO 2008 Prelim Q20)

For (1 + x)38 = a0 + a1x + ...+ a38x38. Let N1 = #{ai | ai ≡ 1 (mod 3)},
N2 = #{ai | ai ≡ 2 (mod 3)}. Compute N1 − N2.

Understanding the problem by trying a few small cases.

1 First of all, we notice that we are only interested in the coefficients mod 3
and we therefore look at (1 + x)n mod 3.

2 For n = 3, (1 + x)3 ≡ 1 + x3 (mod 3). That means N1 = 2 and N2 = 0.

3 For n = 9, (1 + x)9 ≡ (1 + x3)3 ≡ 1 + (x3)3 ≡ 1 + x9 (mod 3). That
means N1 = 2 and N2 = 0.

4 (1 + x)10 ≡ (1 + x)(1 + x)9 ≡ (1 + x)(1 + x9) ≡ 1 + x + x9 + x10

(mod 3). That means N1 = 4 and N2 = 0.

Dr. Koopa Koo Puzzles, Surprises, IMO, and Number Theory



Fermat’s Little Theorem

Idea.

1 From the small cases, it seems writing 38 in base 3 should be fruitful.

2 The fact that (a + b)p ≡ ap + bp (mod p) should be the key.

Proof.

1 38 = 27 + 9 + 2.

2 (1 + x)p
k

≡ 1 + xpk (mod p).

3 (1 + x)38 ≡ (1 + x27)(1 + x9)(1 + x)2 ≡ (1 + x9)(1 + x27)(1 + 2x + x2)
(mod 3).

4 Therefore, we have N1 = 8,N2 = 4, and hence N1 − N2 = 4.
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Fermat’s Little Theorem

Food for Thoughts

What is the total number of odd coefficients in the 100th row of the Pascal
Triangle?
[The first row and second row of the Pascal Triangle is 1 1 and 1 2 1
respectively.]

Food for Thoughts

Suppose

A =

(
a b
c d

)
,

and let p be a prime. What is the total number of solutions to A2 ≡ A
(mod p)?
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Cubing/q-th power Lemma

Example (HKIMO 2009 Selection Test 1)

For the equation y 37 = x3 + 11.
Show that the equation is solvable mod p for all primes p < 100.

Before solving the problem, let me tell you how I came up with this problem.

1 Numbers 3 and 37 are completely artificial.

2 The number 11 serves the purpose to eliminate the possibility that there
could be a trivial or simple-to-fine global solution. (i.e. an integer solution
to the equation)

3 I had the mindset to kill the people who like to brute force.

4 I like to give “false hope” to the students who like to brute force, and
therefore the number “100” is chosen. (after all, there are only 25 primes
to check.)

5 However, the brute-force-group should ran into trouble after a while (i.e.
after the first 10 primes or so . . . I mean, computing the 37th power of a
number mod a prime p is really not that easy.)
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Cubing/q-th power Lemma

Theorem (q-th power lemma)

Suppose p and q are primes. Then every integer a is a qth power mod p if
gcd(p − 1, q) = 1.
In other words, if gcd(p − 1, q) = 1, then the equation xq ≡ a (mod p) is
solvable for all a.

Example

Since gcd(5− 1, 3) = 1. Every integer is a cube mod 5.
Indeed,

13 ≡ 1 (mod 5),

23 ≡ 8 ≡ 3 (mod 5),

33 ≡ (−2)3 ≡ −8 ≡ 2 (mod 5)

43 ≡ (−1)3 ≡ −4 ≡ 4 (mod 5)

.
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Cubing/q-th power Lemma

Back to our problem

Example

For the equation y 37 = x3 + 11.
Show that the equation is solvable mod p for all primes p < 100.

Proof.

1 If (p − 1, 3) = 1 or (p − 1, 37) = 1,

2 then the cubing lemma and the 37th power lemma says the equation is
solvable since everything is either a cube or a 37th power.

3 Therefore, we only need to check primes p such that

p ≡ 1 (mod 3) and p ≡ 1 (mod 37).

4 i.e. p ≡ 1 (mod 111).

5 However, there is no such prime less than 100. We are done.
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Proof of the Cubing/q-th power Lemma

Theorem (q-th power lemma)

Suppose p and q are primes. Then every integer a is a qth power mod p if
gcd(p − 1, q) = 1.
In other words, if gcd(p − 1, q) = 1, then the equation xq ≡ a (mod p) is
solvable for all a.

Proof.

1 Suppose gcd(p − 1, q) = 1.

2 Then there exists integers x and y such that x(p − 1) + qy = 1.

3 Therefore,
a1 ≡ ax(p−1)+qy ≡ ap(x−1) × aqy ≡ aqy

by Fermats little theorem.

4 Hence a = (ay )q is a q-th power mod p and we are done.
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Puzzles and Surprises

Question

Is it possible to find infinitely many primes that ends in 2010?

Answer.

1 NO...

2 You cannot even find one prime that ends in 2010.

Question

Is it possible to find infinitely many primes that ends in 2011?
[Note that 2011 is a prime number.]

Question

Is it possible to find infinitely many primes that ends in 123?
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Dirichlet’s Theorem and Chebotarev’s Density Theorem

The answer is YES due to the following theorem.

Theorem (Dirichlet)

Suppose k and a are integers that are relatively prime. Then the sequence
{kn + a} contains infinitely many primes. In other words, there are infinitely
many primes such that p ≡ a (mod k).

Solution.

1 Let k = 104 and a = 2011, then gcd(k, a) = 1.

2 By Dirichlet’s theorem, we have the sequence {10000n + 2011} contains
infinitely many primes.

3 Likewise, since gcd(1000, 123) = 1, Dirichlet’s theorem says
{1000n + 123} contains infinitely many primes.

By a similar argument, we have the following theorem

Theorem

Given any integer a such that gcd(a, 10) = 1, then there are infinitely many
primes p that ends in a.
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Dirichlet’s Theorem and Chebotarev’s Density Theorem

Question

Given gcd(k, a) = 1. If we randomly choose a prime number p, what is the
probability that p ≡ a (mod k)?

The answer is given by the following

Theorem (Chebotarev’s Density Theorem)

Given gcd(k, a) = 1. If we randomly choose a prime number p, what is the
probability that p ≡ a (mod k) is 1

ϕ(k)
.
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Dirichlet’s Theorem and Chebotarev’s Density Theorem

Question

What is ϕ(k)?

Definition (Euler ϕ function)

Let ϕ(m) = {number of integers, a less than m and relatively prime to m}. i.e.
ϕ(m) = {a ∈ N | (a,m) = 1 and a < m.}.

Example

1 ϕ(4) = 2, since 1, 3 are the integers less than 4 and are relatively prime to
4.

2 ϕ(5) = 4, viz. 1, 2, 3, 4 are less than 5 and are relatively prime to 5.

3 ϕ(10) = 4, namely 1, 3, 7, 9 are less than 10 are are relatively prime to 10.
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Dirichlet’s Theorem and Chebotarev’s Density Theorem

Theorem (Formula for ϕ(m))

Let m = pa1
1 pa2

2 . . . pak
k , where the pi are distinct prime factors of m then:

ϕ(m) = m
k∏

i=1

(
1− 1

pi

)
= m

(
1− 1

p1

)
× · · · ×

(
1− 1

pk

)
.

Example

1 Since 1000 = 23×53, we have ϕ(1000) = 1000×(1− 1/2)(1− 1/5) = 400.

2 Since 10000 = 24×54, we have
ϕ(10000) = 10000×(1− 1/2)(1− 1/5) = 4000.

This gives

Theorem

There are infinitely many primes p that ends in 123 and among all the primes,
the probability of choosing a prime that ends in 123 is 1

ϕ(1000)
= 1

400
.

Dr. Koopa Koo Puzzles, Surprises, IMO, and Number Theory



Dirichlet’s Theorem and Chebotarev’s Density Theorem

Theorem (Formula for ϕ(m))

Let m = pa1
1 pa2

2 . . . pak
k , where the pi are distinct prime factors of m then:

ϕ(m) = m
k∏

i=1

(
1− 1

pi

)
= m

(
1− 1

p1

)
× · · · ×

(
1− 1

pk

)
.

Example

1 Since 1000 = 23×53, we have ϕ(1000) = 1000×(1− 1/2)(1− 1/5) = 400.

2 Since 10000 = 24×54, we have
ϕ(10000) = 10000×(1− 1/2)(1− 1/5) = 4000.

This gives

Theorem

There are infinitely many primes p that ends in 123 and among all the primes,
the probability of choosing a prime that ends in 123 is 1

ϕ(1000)
= 1

400
.

Dr. Koopa Koo Puzzles, Surprises, IMO, and Number Theory



Dirichlet’s Theorem and Chebotarev’s Density Theorem

Theorem (Formula for ϕ(m))

Let m = pa1
1 pa2

2 . . . pak
k , where the pi are distinct prime factors of m then:

ϕ(m) = m
k∏

i=1

(
1− 1

pi

)
= m

(
1− 1

p1

)
× · · · ×

(
1− 1

pk

)
.

Example

1 Since 1000 = 23×53, we have ϕ(1000) = 1000×(1− 1/2)(1− 1/5) = 400.

2 Since 10000 = 24×54, we have
ϕ(10000) = 10000×(1− 1/2)(1− 1/5) = 4000.

This gives

Theorem

There are infinitely many primes p that ends in 123 and among all the primes,
the probability of choosing a prime that ends in 123 is 1

ϕ(1000)
= 1

400
.

Dr. Koopa Koo Puzzles, Surprises, IMO, and Number Theory



Fermat’s Last Theorem

Theorem (Fermat’s Last Theorem)

Suppose n ≥ 3. If x , y , z are integers and xn + yn = zn, then xyz = 0.

For the proof, we shall do it next time!

Food for Thoughts

Find all integer solutions to 3x2 + 1 = 4y 3.
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Thanks

I would like to thank the HKAGE (Hong Kong Academy for Gifted Education)
for the invitation and thank you all for coming!
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