Puzzles, Surprises, IMO, and Number Theory

Dr. Koopa Koo

Hong Kong International Mathematical Olympiad Committee email: dr.koopakoo@gmail.com

April 22, 2010

Dr. Koopa Koo Puzzles, Surprises, IMO, and Number Theory

문어 귀문어

- IMO is considered to be the most important and influential mathematical competition at the secondary level.
- It is a two-day contest, 4.5 hours per day.
- The paper consists of 6 problems, 3 per day.
- I Each problem worth 7 points, thus the full score is 42 points.

- ∢ ⊒ →

-

- IMO is considered to be the most important and influential mathematical competition at the secondary level.
- It is a two-day contest, 4.5 hours per day.
- The paper consists of 6 problems, 3 per day.
- Each problem worth 7 points, thus the full score is 42 points.

< ∃ >

- IMO is considered to be the most important and influential mathematical competition at the secondary level.
- It is a two-day contest, 4.5 hours per day.
- The paper consists of 6 problems, 3 per day.
- Each problem worth 7 points, thus the full score is 42 points.

< ∃ >

- IMO is considered to be the most important and influential mathematical competition at the secondary level.
- lt is a two-day contest, 4.5 hours per day.
- The paper consists of 6 problems, 3 per day.
- Section 2015 Each problem worth 7 points, thus the full score is 42 points.

< ∃ >

Algebra

- Ombinatorics
- Geometry
- O Number Theory

▶ ★ 臣 ▶

-

- Algebra
- Ombinatorics
- Geometry
- O Number Theory

문어 귀문어

- Algebra
- Ombinatorics
- Geometry
- Oumber Theory

Dr. Koopa Koo Puzzles, Surprises, IMO, and Number Theory

< ≣⇒

-

- Algebra
- Ombinatorics
- Geometry
- Oumber Theory

< ≣⇒

HKIMO Prelim (Coming up on 29th May) (Weight = 1)

- Qualified students are invited to the IMO Training
- Selection Test 1 (August) (Weight = 2)
- Selection Test 2 (October) (Weight = 3)
- O CHKMO (December) (Weight = 3)
- O APMO (March) (Weight = 4)

- HKIMO Prelim (Coming up on 29th May) (Weight = 1)
- Qualified students are invited to the IMO Training
- Selection Test 1 (August) (Weight = 2)
- Selection Test 2 (October) (Weight = 3)
- O CHKMO (December) (Weight = 3)
- APMO (March) (Weight = 4)

글 > : < 글 >

- **I** HKIMO Prelim (Coming up on 29th May) (Weight = 1)
- Qualified students are invited to the IMO Training
- Selection Test 1 (August) (Weight = 2)
- Selection Test 2 (October) (Weight = 3)
- OCHKMO (December) (Weight = 3)
- APMO (March) (Weight = 4)

글 > : < 글 >

- HKIMO Prelim (Coming up on 29th May) (Weight = 1)
- Qualified students are invited to the IMO Training
- Selection Test 1 (August) (Weight = 2)
- Selection Test 2 (October) (Weight = 3)
- O CHKMO (December) (Weight = 3)
- APMO (March) (Weight = 4)

프 > > ㅋ ㅋ >

- HKIMO Prelim (Coming up on 29th May) (Weight = 1)
- Qualified students are invited to the IMO Training
- Selection Test 1 (August) (Weight = 2)
- Selection Test 2 (October) (Weight = 3)
- CHKMO (December) (Weight = 3)
- APMO (March) (Weight = 4)

프 > > ㅋ ㅋ >

- HKIMO Prelim (Coming up on 29th May) (Weight = 1)
- Qualified students are invited to the IMO Training
- Selection Test 1 (August) (Weight = 2)
- Selection Test 2 (October) (Weight = 3)
- Solution (December) (Weight = 3)
- APMO (March) (Weight = 4)

글 > : < 글 >

2010 Team Members

Ching Tak Wing	Queen's College
Hung Ka Kin	Diocesan Boys' School (Caltech '14)
Chung Ping Ngai	LaSalle College (MIT '14)
Tam Ka Yu	Queen's College
Yu Tak Hei	LaSalle College
Yip Hok Pan	Ying Wa College

2010 Reserved Team Members

Lo Jing Hoi	LaSalle College
Kwok Hoi Kit	LaSalle College
Li Yau Wing	Ying Wa College
Wong Ching (F)	PLK Centenary Li Shiu Chung Mem College
Chan Kwun Tat	SKH Lam Woo Mem Sec School
Wo Bar Wai Barry	LaSalle College

ミ▶ ▲ ミ▶ ミニー のへの

- e Euclidean Algorithm
- Modular Arithmetic
- I Fermat's Little Theorem and the Cubing Lemma
- Oirichlet's Theorem and the Chebotarev Density Theorem
- Fermat's Last Theorem

注入 米 注入

Ξ.

- e Euclidean Algorithm
- Modular Arithmetic
- I Fermat's Little Theorem and the Cubing Lemma
- Oirichlet's Theorem and the Chebotarev Density Theorem
- Fermat's Last Theorem

< 注 → < 注 →

Ξ.

euclidean Algorithm

- Modular Arithmetic
- In Fermat's Little Theorem and the Cubing Lemma
- Oirichlet's Theorem and the Chebotarev Density Theorem
- Fermat's Last Theorem

注入 米 注入

- euclidean Algorithm
- Modular Arithmetic
- Fermat's Little Theorem and the Cubing Lemma
- Oirichlet's Theorem and the Chebotarev Density Theorem
- Fermat's Last Theorem

문어 세 문어

- euclidean Algorithm
- Modular Arithmetic
- Sermat's Little Theorem and the Cubing Lemma
- Oirichlet's Theorem and the Chebotarev Density Theorem
- Fermat's Last Theorem

▶ ★ 臣 ▶

-

- euclidean Algorithm
- Modular Arithmetic
- G Fermat's Little Theorem and the Cubing Lemma
- **5** Dirichlet's Theorem and the Chebotarev Density Theorem
- Fermat's Last Theorem

- ∢ ⊒ →

- euclidean Algorithm
- Modular Arithmetic
- G Fermat's Little Theorem and the Cubing Lemma
- **5** Dirichlet's Theorem and the Chebotarev Density Theorem
- 6 Fermat's Last Theorem

- ∢ ⊒ →

A positive integer is a *prime* number if it is only divisible by itself and 1. (Note 1 is NOT a prime number.)

Theorem

There is no largest prime number, that is, there are infinitely many primes.

Proof.

- 2 Let q be the product of the first p numbers.
- Then q + 1 is not divisible by any of them.
- Thus q + 1 is also prime and greater than p.

A 32 b

A positive integer is a *prime* number if it is only divisible by itself and 1. (Note 1 is NOT a prime number.)

Theorem

There is no largest prime number, that is, there are infinitely many primes.

Proof.

- Suppose *p* were the largest prime number.
- 2 Let q be the product of the first p numbers.
- 3 Then q + 1 is not divisible by any of them.
- If thus q + 1 is also prime and greater than p.

- ∢ ≣ ▶

A positive integer is a *prime* number if it is only divisible by itself and 1. (Note 1 is NOT a prime number.)

Theorem

There is no largest prime number, that is, there are infinitely many primes.

Proof.

- Suppose *p* were the largest prime number.
- 2 Let q be the product of the first p numbers.
- Then q + 1 is not divisible by any of them.
 - Thus q + 1 is also prime and greater than p.

- ∢ ≣ →

A positive integer is a *prime* number if it is only divisible by itself and 1. (Note 1 is NOT a prime number.)

Theorem

There is no largest prime number, that is, there are infinitely many primes.

Proof.

- Suppose *p* were the largest prime number.
- 2 Let q be the product of the first p numbers.
- Then q + 1 is not divisible by any of them.
- Thus q + 1 is also prime and greater than p.

- ∢ ≣ →

A Natural Question

Can we do better?

The question is answered by the Prime Number Theorem.

Definition

Let $\pi(x)$ denote the number of primes less than x. For example, $\pi(10) = 4$ since there are four primes, viz. 2, 3, 5, 7 less than 10. Also, $\pi(100) = 25$.

Theorem (Prime Number Theorem)

$$\lim_{x\to\infty}\frac{\pi(x)}{\frac{x}{\ln x}}=1.$$

In other words, when x is big,

$$\pi(x) \sim \frac{x}{\ln x}.$$

글 > : < 글 >

Euclidean Algorithm is basically repeated use of division algorithm and it is very handy in finding the gcd of two integers a and b, denoted by gcd(a, b).

Example Find gcd(121,7). Solution. Write $121 = 7 \times 17 + 2$, then we have: $121 = 17 \times 7 + 2$ $7 = 3 \times 2 + 1$ $2 = 2 \times 1 + 0$ (121,7) is the least non-zero remainder, which is 1, thus (121,7) = 1.

글 > - - 글 > - -

-

Theorem

For $a, b \in \mathbb{Z}$, with gcd(a, b) = 1 then there exists $x, y \in \mathbb{Z}$ such that

ax + by = 1.

For the previous example, in order to find the x, y in the theorem. We run the algorithm backwards

Solution.

$$1 = 7 - 3 \times 2$$

= 7 - 3 × (121 - 7 × 17)
= 7 - 3 × 121 + 51 × 7
= 52 × 7 - 3 × 121.

Note that we replace 2 by $121 - 7 \times 17$ in the second line. Hence x, y are -3,52 respectively.

글 > : < 글 >

Example (IMO 1959 Q1)

Prove that $\frac{21n+4}{14n+3}$ is irreducible for every natural number n.

Proof.

It suffices to prove that gcd(21n + 4, 14n + 3) = 1 for all *n*. Applying the Euclidean algorithm, we have:

$$21n + 4 = 1 \times (14n + 3) + (7n + 1)$$

$$14n + 3 = 2 \times (7n + 1) + \boxed{1}$$

$$7n + 1 = (7n + 1) \times 1 + 0$$

Thus gcd(21n + 4, 14n + 3) = 1 for all *n*.

글 > : < 글 > : :

```
a \equiv b \pmod{m} iff m \mid a - b, in which we say that a is congruent to b modulo m.
```

Example

In congruence notation, we have

```
3 ≡ 1 (mod 2),
7 ≡ 4 ≡ 1 ≡ −2 ≡ 10 (mod 3).
```

Notice that n is even iff $n \equiv 0 \pmod{2}$.

```
a \equiv b \pmod{m} iff m \mid a - b, in which we say that a is congruent to b modulo m.
```

Example

In congruence notation, we have

3 ≡ 1 (mod 2),
7 ≡ 4 ≡ 1 ≡ -2 ≡ 10 (mod 3).

Notice that n is even iff $n \equiv 0 \pmod{2}$.

글 > : < 글 > : :

```
a \equiv b \pmod{m} iff m \mid a - b, in which we say that a is congruent to b modulo m.
```

Example

In congruence notation, we have

$$3 \equiv 1 \pmod{2},$$

$$\ 2 \ \ 7 \equiv 4 \equiv 1 \equiv -2 \equiv 10 \ (mod \ 3).$$

Notice that n is even iff $n \equiv 0 \pmod{2}$.

Theorem (Basic Properties of Congruence)

Suppose $a, b, c, d, m \in \mathbb{Z}$, we have:

 $a \equiv b \pmod{m}, b \equiv c \pmod{m} \Rightarrow a \equiv c \pmod{m}$

 $a \equiv b \pmod{m}, c \equiv d \pmod{m} \Rightarrow a \pm c \equiv b \pm d \pmod{m}.$

< ≣ ▶

-

Theorem (Basic Properties of Congruence)

Suppose $a, b, c, d, m \in \mathbb{Z}$, we have:

 $a \equiv b \pmod{m}, b \equiv c \pmod{m} \Rightarrow a \equiv c \pmod{m}$

 $a \equiv b \pmod{m}, c \equiv d \pmod{m} \Rightarrow a \pm c \equiv b \pm d \pmod{m}.$

(a) $ab \equiv ac \pmod{m}$, $gcd(a, m) = 1 \Rightarrow b \equiv c \pmod{m}$.

< ≣ ▶

-
Theorem (Basic Properties of Congruence)

Suppose $a, b, c, d, m \in \mathbb{Z}$, we have:

 $a \equiv b \pmod{m}, b \equiv c \pmod{m} \Rightarrow a \equiv c \pmod{m}$

 $a \equiv b \pmod{m}, c \equiv d \pmod{m} \Rightarrow a \pm c \equiv b \pm d \pmod{m}.$

) $ab \equiv ac \pmod{m}, \gcd(a,m) = 1 \Rightarrow b \equiv c \pmod{m}.$

- ₹ 🖹 🕨

-

Theorem (Basic Properties of Congruence)

Suppose $a, b, c, d, m \in \mathbb{Z}$, we have:

 $a \equiv b \pmod{m}, b \equiv c \pmod{m} \Rightarrow a \equiv c \pmod{m}$

 $a \equiv b \pmod{m}, c \equiv d \pmod{m} \Rightarrow a \pm c \equiv b \pm d \pmod{m}.$

$$a \equiv b \pmod{m}, c \equiv d \pmod{m} \Rightarrow ac \equiv bd \pmod{m}.$$

 \bigcirc $ab\equiv ac \pmod{m}, \gcd(a,m)=1 \Rightarrow b\equiv c \pmod{m}.$

프 (프) -

Theorem (Basic Properties of Congruence)

Suppose $a, b, c, d, m \in \mathbb{Z}$, we have:

$$a \equiv b \pmod{m}, b \equiv c \pmod{m} \Rightarrow a \equiv c \pmod{m}$$

$$a \equiv b \pmod{m}, c \equiv d \pmod{m} \Rightarrow a \pm c \equiv b \pm d \pmod{m}.$$

$$a \equiv b \pmod{m}, c \equiv d \pmod{m} \Rightarrow ac \equiv bd \pmod{m}.$$

→ 문 → 문

(a) Find all natural numbers n for which 7 divides 2ⁿ - 1.
(b) Prove that there is no natural number n for which 7 divides 2ⁿ + 1.

Proof.

(a) Since $2^3 \equiv 8 \equiv 1 \pmod{7}$. This means $2^n \pmod{7}$ is periodic with period 3. It suffices to consider three cases

• If n = 3k, then $2^n - 1 \equiv 2^{3k} - 1 \equiv (2^3)^k - 1 \equiv 1^k - 1 \equiv 1 - 1 \equiv 0$ (mod 7).

(a) If n = 3k + 1, then $2^n - 1 \equiv 2^{3k+1} - 1 \equiv 2 \times 2^{3k} - 1 \equiv 2 - 1 \equiv 1 \pmod{7}$.

- (a) If n = 3k + 2, then $2^n 1 \equiv 4 \times 2^{3k} 1 \equiv 4 1 \equiv 3 \pmod{7}$.
- Therefore, we conclude that $2^n 1$ is divisible by 7 if and only if n = 3k, that is $n \equiv 0 \pmod{3}$.
- The proof of (b) is similar to (a) and will be left as exercise for the audience.

э.

(a) Find all natural numbers n for which 7 divides 2ⁿ - 1.
(b) Prove that there is no natural number n for which 7 divides 2ⁿ + 1.

Proof.

(a) Since $2^3 \equiv 8 \equiv 1 \pmod{7}$. This means $2^n \pmod{7}$ is periodic with period 3. It suffices to consider three cases

- If n = 3k, then $2^n 1 \equiv 2^{3k} 1 \equiv (2^3)^k 1 \equiv 1^k 1 \equiv 1 1 \equiv 0 \pmod{7}$.
- (a) If n = 3k + 1, then $2^n 1 \equiv 2^{3k+1} 1 \equiv 2 \times 2^{3k} 1 \equiv 2 1 \equiv 1 \pmod{7}$.
- (a) If n = 3k + 2, then $2^n 1 \equiv 4 \times 2^{3k} 1 \equiv 4 1 \equiv 3 \pmod{7}$.
- Therefore, we conclude that $2^n 1$ is divisible by 7 if and only if n = 3k, that is $n \equiv 0 \pmod{3}$.
- The proof of (b) is similar to (a) and will be left as exercise for the audience.

(a) Find all natural numbers n for which 7 divides 2ⁿ - 1.
(b) Prove that there is no natural number n for which 7 divides 2ⁿ + 1.

Proof.

(a) Since $2^3 \equiv 8 \equiv 1 \pmod{7}$. This means $2^n \pmod{7}$ is periodic with period 3. It suffices to consider three cases

• If n = 3k, then $2^n - 1 \equiv 2^{3k} - 1 \equiv (2^3)^k - 1 \equiv 1^k - 1 \equiv 1 - 1 \equiv 0 \pmod{7}$.

2 If
$$n = 3k + 1$$
, then $2^n - 1 \equiv 2^{3k+1} - 1 \equiv 2 \times 2^{3k} - 1 \equiv 2 - 1 \equiv 1 \pmod{7}$.

- (a) If n = 3k + 2, then $2^n 1 \equiv 4 \times 2^{3k} 1 \equiv 4 1 \equiv 3 \pmod{7}$.
- Therefore, we conclude that 2ⁿ − 1 is divisible by 7 if and only if n = 3k, that is n ≡ 0 (mod 3).
- The proof of (b) is similar to (a) and will be left as exercise for the audience.

同下 イヨト イヨト

(a) Find all natural numbers n for which 7 divides 2ⁿ - 1.
(b) Prove that there is no natural number n for which 7 divides 2ⁿ + 1.

Proof.

(a) Since $2^3 \equiv 8 \equiv 1 \pmod{7}$. This means $2^n \pmod{7}$ is periodic with period 3. It suffices to consider three cases

• If n = 3k, then $2^n - 1 \equiv 2^{3k} - 1 \equiv (2^3)^k - 1 \equiv 1^k - 1 \equiv 1 - 1 \equiv 0 \pmod{7}$.

2 If
$$n = 3k + 1$$
, then $2^n - 1 \equiv 2^{3k+1} - 1 \equiv 2 \times 2^{3k} - 1 \equiv 2 - 1 \equiv 1 \pmod{7}$.

- **(**) If n = 3k + 2, then $2^n 1 \equiv 4 \times 2^{3k} 1 \equiv 4 1 \equiv 3 \pmod{7}$.
- Therefore, we conclude that $2^n 1$ is divisible by 7 if and only if n = 3k, that is $n \equiv 0 \pmod{3}$.
- The proof of (b) is similar to (a) and will be left as exercise for the audience.

同下 イヨト イヨト

(a) Find all natural numbers n for which 7 divides 2ⁿ - 1.
(b) Prove that there is no natural number n for which 7 divides 2ⁿ + 1.

Proof.

(a) Since $2^3 \equiv 8 \equiv 1 \pmod{7}$. This means $2^n \pmod{7}$ is periodic with period 3. It suffices to consider three cases

• If n = 3k, then $2^n - 1 \equiv 2^{3k} - 1 \equiv (2^3)^k - 1 \equiv 1^k - 1 \equiv 1 - 1 \equiv 0 \pmod{7}$.

2 If n = 3k + 1, then $2^n - 1 \equiv 2^{3k+1} - 1 \equiv 2 \times 2^{3k} - 1 \equiv 2 - 1 \equiv 1 \pmod{7}$.

- **3** If n = 3k + 2, then $2^n 1 \equiv 4 \times 2^{3k} 1 \equiv 4 1 \equiv 3 \pmod{7}$.
- Therefore, we conclude that 2ⁿ − 1 is divisible by 7 if and only if n = 3k, that is n ≡ 0 (mod 3).

The proof of (b) is similar to (a) and will be left as exercise for the audience.

э.

(a) Find all natural numbers n for which 7 divides 2ⁿ - 1.
(b) Prove that there is no natural number n for which 7 divides 2ⁿ + 1.

Proof.

(a) Since $2^3 \equiv 8 \equiv 1 \pmod{7}$. This means $2^n \pmod{7}$ is periodic with period 3. It suffices to consider three cases

• If n = 3k, then $2^n - 1 \equiv 2^{3k} - 1 \equiv (2^3)^k - 1 \equiv 1^k - 1 \equiv 1 - 1 \equiv 0 \pmod{7}$.

2 If n = 3k + 1, then $2^n - 1 \equiv 2^{3k+1} - 1 \equiv 2 \times 2^{3k} - 1 \equiv 2 - 1 \equiv 1 \pmod{7}$.

- **3** If n = 3k + 2, then $2^n 1 \equiv 4 \times 2^{3k} 1 \equiv 4 1 \equiv 3 \pmod{7}$.
- Therefore, we conclude that $2^n 1$ is divisible by 7 if and only if n = 3k, that is $n \equiv 0 \pmod{3}$.
- The proof of (b) is similar to (a) and will be left as exercise for the audience.

伺 とう ほう うちょう

э.

Example (HKIMO Prelim Shortlist)

$$a_1y + a_2z + a_3w = 0$$

 $a_4x + a_5z + a_6w = 0$
 $a_7x + a_8y + a_9w = 0$
 $a_{10}x + a_{11}y + a_{12}z = 0$,
 $a_i \in \{1, -1\}$ for $1 \le i \le 12$. Find the probability the

where $a_i \in \{1, -1\}$ for $1 \le i \le 12$. Find the probability that (x, y, z, w) = (0, 0, 0, 0) is the only solution to the system.

Idea.

It suffices to determine the probability that the matrix

$$A=egin{pmatrix} 0&a_1&a_2&a_3\ a_4&0&a_5&a_6\ a_7&a_8&0&a_9\ a_{10}&a_{11}&a_{12}&0 \end{pmatrix}, \quad a_i\in\{1,-1\}$$

is invertible. i.e. $det(A) \neq 0$.

문어 세 문어

I am going to first deal with a special case and then reduce the general case to this special case. $\hfill\square$

Special Case.

Suppose $a_i = 1$ for all *i*, then the system has only the trivial solution because

$$\det \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} = -3 \neq 0.$$

Reducing the general case to the special case.

Now, since $-1 \equiv 1 \pmod{2}$. We have

$$\begin{pmatrix} 0 & a_1 & a_2 & a_3 \\ a_4 & 0 & a_5 & a_6 \\ a_7 & a_8 & 0 & a_9 \\ a_{10} & a_{11} & a_{12} & 0 \end{pmatrix} \equiv \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \pmod{2}.$$

Therefore, we have:

$$\det \begin{pmatrix} 0 & a_1 & a_2 & a_3 \\ a_4 & 0 & a_5 & a_6 \\ a_7 & a_8 & 0 & a_9 \\ a_{10} & a_{11} & a_{12} & 0 \end{pmatrix} \equiv \det \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \equiv -3 \equiv 1 \pmod{2},$$

which is odd, and hence non-zero. Therefore, the system always has only the trivial solution for all choices of a_i . Hence the probability is 1.

글 > : < 글 >

Example (HKIMO 2009 Selection Test 1)

Find the total number of solutions to the following system of equations:

$$a^{2} + bc \equiv a \pmod{37}$$

$$b(a+d) \equiv b \pmod{37}$$

$$c(a+d) \equiv c \pmod{37}$$

$$bc + d^{2} \equiv d \pmod{37}$$

$$ad - bc \equiv 1 \pmod{37}$$

→ Ξ →

- ∢ ≣ ▶

- ∢ ≣ ▶

< ∃⇒

글 🖌 🖌 글 🛌

Proof. Let A = (a b)/(c d). Then the first 4 equations of the system system is equivalent to A² ≡ A (mod 37), and the last equation means the matrix A is invertible.

• This gives A = I immediately. Hence the solution is unique.

물 에 물 어떤 것

Let p be a prime, then we have

$$a^p \equiv a \pmod{p}$$
 for all $a \ge 0$.

Proof.

Fix a prime p, we proceed by induction on a.

- If For a = 0, we have $0^p 0 \equiv 0 \pmod{p}$.
- 3 Assume $a^p \equiv a \pmod{p}$ some a > 0, we have

$$\left(a+1
ight)^{p}=\sum_{k=0}^{p} egin{pmatrix}p\\k\end{pmatrix}a^{k}\equiv a^{p}+1 \pmod{p}.$$

Note that $\binom{p}{k} \equiv 0 \pmod{p}$ for $1 \leq k \leq p-1$.

- If Hence $(a + 1)^p \equiv a^p + 1 \equiv a + 1 \pmod{p}$ by the induction hypothesis.
- Therefore S(a+1) is true and we are done by induction.

글 제 제 글 제

Let p be a prime, then we have

$$a^p \equiv a \pmod{p}$$
 for all $a \ge 0$.

Proof.

Fix a prime p, we proceed by induction on a.

1 For
$$a = 0$$
, we have $0^p - 0 \equiv 0 \pmod{p}$.

3 Assume $a^p \equiv a \pmod{p}$ some a > 0, we have

$$\left(a+1
ight)^{
ho}=\sum_{k=0}^{
ho} {p \choose k} a^k\equiv a^{
ho}+1 \pmod{p}.$$

Note that $\binom{p}{k} \equiv 0 \pmod{p}$ for $1 \leq k \leq p-1$.

If Hence $(a+1)^p \equiv a^p + 1 \equiv a+1 \pmod{p}$ by the induction hypothesis.

Therefore S(a+1) is true and we are done by induction.

글 제 제 글 제

Let p be a prime, then we have

$$a^p \equiv a \pmod{p}$$
 for all $a \ge 0$.

Proof.

Fix a prime p, we proceed by induction on a.

• For a = 0, we have $0^p - 0 \equiv 0 \pmod{p}$.

2 Assume $a^p \equiv a \pmod{p}$ some a > 0, we have

$$\left(a+1
ight)^{p}=\sum_{k=0}^{p} egin{pmatrix}p\\k\end{pmatrix}a^{k}\equiv a^{p}+1 \pmod{p}.$$

Note that $\binom{p}{k} \equiv 0 \pmod{p}$ for $1 \leq k \leq p - 1$.

(a Hence $(a + 1)^p \equiv a^p + 1 \equiv a + 1 \pmod{p}$ by the induction hypothesis.

Therefore S(a+1) is true and we are done by induction.

글 > - - 글 >

Let p be a prime, then we have

$$a^p \equiv a \pmod{p}$$
 for all $a \ge 0$.

Proof.

Fix a prime p, we proceed by induction on a.

• For a = 0, we have $0^p - 0 \equiv 0 \pmod{p}$.

2 Assume $a^p \equiv a \pmod{p}$ some a > 0, we have

$$\left(a+1
ight)^{p}=\sum_{k=0}^{p} egin{pmatrix}p\\k\end{pmatrix}a^{k}\equiv a^{p}+1 \pmod{p}.$$

Note that $\binom{p}{k} \equiv 0 \pmod{p}$ for $1 \leq k \leq p-1$.

• Hence $(a+1)^p \equiv a^p + 1 \equiv a+1 \pmod{p}$ by the induction hypothesis.

Therefore S(a+1) is true and we are done by induction.

Let p be a prime, then we have

$$a^p \equiv a \pmod{p}$$
 for all $a \ge 0$.

Proof.

Fix a prime p, we proceed by induction on a.

• For a = 0, we have $0^p - 0 \equiv 0 \pmod{p}$.

2 Assume $a^p \equiv a \pmod{p}$ some a > 0, we have

$$(a+1)^p=\sum_{k=0}^p {p \choose k} a^k\equiv a^p+1 \pmod{p}.$$

Note that $\binom{p}{k} \equiv 0 \pmod{p}$ for $1 \leq k \leq p-1$.

(a) Hence $(a + 1)^p \equiv a^p + 1 \equiv a + 1 \pmod{p}$ by the induction hypothesis.

• Therefore S(a+1) is true and we are done by induction.

글 > - - 글 >

Let p be a prime, then we have

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$
 for all $a, b \in \mathbb{Z}$

Proof.

(1) By Fermat's little theorem, we have $a^p \equiv a \pmod{p}$, and

- $b^{p} \equiv b \pmod{p}.$
- **(a)** By Fermat's little theorem again, we have $(a + b)^p \equiv a + b \equiv a^p + b \pmod{p}$. Done.

Let p be a prime, then we have

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$
 for all $a, b \in \mathbb{Z}$

Proof.

• By Fermat's little theorem, we have $a^p \equiv a \pmod{p}$, and

 $b^p \equiv b \pmod{p}.$

O By Fermat's little theorem again, we have (a + b)^p ≡ a + b ≡ a^p + b (mod p). Done.

Let p be a prime, then we have

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$
 for all $a, b \in \mathbb{Z}$

Proof.

• By Fermat's little theorem, we have $a^p \equiv a \pmod{p}$, and

$$| b^p \equiv b \pmod{p}.$$

By Fermat's little theorem again, we have (a + b)^p ≡ a + b ≡ a^p + b (mod p). Done.

Let p be a prime, then we have

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$
 for all $a, b \in \mathbb{Z}$

Proof.

- By Fermat's little theorem, we have $a^p \equiv a \pmod{p}$, and
- $b^p \equiv b \pmod{p}.$
- By Fermat's little theorem again, we have (a + b)^p = a + b = a^p + b^p (mod p). Done.

프 (프)

For $(1 + x)^{38} = a_0 + a_1x + ... + a_{38}x^{38}$. Let $N_1 = \#\{a_i \mid a_i \equiv 1 \pmod{3}\}$, $N_2 = \#\{a_i \mid a_i \equiv 2 \pmod{3}\}$. Compute $N_1 - N_2$.

Understanding the problem by trying a few small cases.

- First of all, we notice that we are only interested in the coefficients mod 3 and we therefore look at $(1 + x)^n \mod 3$.
- (a) For n = 3, $(1 + x)^3 \equiv 1 + x^3 \pmod{3}$. That means $N_1 = 2$ and $N_2 = 0$.
- ◎ For n = 9, $(1 + x)^9 \equiv (1 + x^3)^3 \equiv 1 + (x^3)^3 \equiv 1 + x^9 \pmod{3}$. That means $N_1 = 2$ and $N_2 = 0$.
- $(1+x)^{10} \equiv (1+x)(1+x)^9 \equiv (1+x)(1+x^9) \equiv 1+x+x^9+x^{10}$ (mod 3). That means $N_1 = 4$ and $N_2 = 0$.

For $(1 + x)^{38} = a_0 + a_1x + ... + a_{38}x^{38}$. Let $N_1 = \#\{a_i \mid a_i \equiv 1 \pmod{3}\}$, $N_2 = \#\{a_i \mid a_i \equiv 2 \pmod{3}\}$. Compute $N_1 - N_2$.

Understanding the problem by trying a few small cases.

- First of all, we notice that we are only interested in the coefficients mod 3 and we therefore look at (1 + x)ⁿ mod 3.
- (a) For n = 3, $(1 + x)^3 \equiv 1 + x^3 \pmod{3}$. That means $N_1 = 2$ and $N_2 = 0$.
- ◎ For n = 9, $(1 + x)^9 \equiv (1 + x^3)^3 \equiv 1 + (x^3)^3 \equiv 1 + x^9 \pmod{3}$. That means $N_1 = 2$ and $N_2 = 0$.
- ⓐ $(1+x)^{10} \equiv (1+x)(1+x)^9 \equiv (1+x)(1+x^9) \equiv 1+x+x^9+x^{10}$ (mod 3). That means N₁ = 4 and N₂ = 0.

For $(1 + x)^{38} = a_0 + a_1x + ... + a_{38}x^{38}$. Let $N_1 = \#\{a_i \mid a_i \equiv 1 \pmod{3}\}$, $N_2 = \#\{a_i \mid a_i \equiv 2 \pmod{3}\}$. Compute $N_1 - N_2$.

Understanding the problem by trying a few small cases.

- First of all, we notice that we are only interested in the coefficients mod 3 and we therefore look at (1 + x)ⁿ mod 3.
- **3** For n = 3, $(1 + x)^3 \equiv 1 + x^3 \pmod{3}$. That means $N_1 = 2$ and $N_2 = 0$.
- ◎ For n = 9, $(1 + x)^9 \equiv (1 + x^3)^3 \equiv 1 + (x^3)^3 \equiv 1 + x^9 \pmod{3}$. That means $N_1 = 2$ and $N_2 = 0$.
- ⓐ $(1+x)^{10} \equiv (1+x)(1+x)^9 \equiv (1+x)(1+x^9) \equiv 1+x+x^9+x^{10}$ (mod 3). That means N₁ = 4 and N₂ = 0.

For $(1 + x)^{38} = a_0 + a_1x + ... + a_{38}x^{38}$. Let $N_1 = \#\{a_i \mid a_i \equiv 1 \pmod{3}\}$, $N_2 = \#\{a_i \mid a_i \equiv 2 \pmod{3}\}$. Compute $N_1 - N_2$.

Understanding the problem by trying a few small cases.

First of all, we notice that we are only interested in the coefficients mod 3 and we therefore look at (1 + x)ⁿ mod 3.

• For
$$n = 3$$
, $(1 + x)^3 \equiv 1 + x^3 \pmod{3}$. That means $N_1 = 2$ and $N_2 = 0$.

- For n = 9, $(1 + x)^9 \equiv (1 + x^3)^3 \equiv 1 + (x^3)^3 \equiv 1 + x^9 \pmod{3}$. That means $N_1 = 2$ and $N_2 = 0$.
- $(1+x)^{10} \equiv (1+x)(1+x)^9 \equiv (1+x)(1+x^9) \equiv 1+x+x^9+x^{10}$ (mod 3). That means $N_1 = 4$ and $N_2 = 0$.

A = A = A = OQO
 A

For $(1 + x)^{38} = a_0 + a_1x + ... + a_{38}x^{38}$. Let $N_1 = \#\{a_i \mid a_i \equiv 1 \pmod{3}\}$, $N_2 = \#\{a_i \mid a_i \equiv 2 \pmod{3}\}$. Compute $N_1 - N_2$.

Understanding the problem by trying a few small cases.

First of all, we notice that we are only interested in the coefficients mod 3 and we therefore look at (1 + x)ⁿ mod 3.

(a) For
$$n = 3$$
, $(1 + x)^3 \equiv 1 + x^3 \pmod{3}$. That means $N_1 = 2$ and $N_2 = 0$.

- For n = 9, $(1 + x)^9 \equiv (1 + x^3)^3 \equiv 1 + (x^3)^3 \equiv 1 + x^9 \pmod{3}$. That means $N_1 = 2$ and $N_2 = 0$.
- $(1+x)^{10} \equiv (1+x)(1+x)^9 \equiv (1+x)(1+x^9) \equiv 1+x+x^9+x^{10}$ (mod 3). That means $N_1 = 4$ and $N_2 = 0$.

A = A = A = OQO
 A

From the small cases, it seems writing 38 in base 3 should be fruitful

2) The fact that $(a + b)^p \equiv a^p + b^p \pmod{p}$ should be the key.

Proof.

- 38 = 27 + 9 + 2.
- (2) $(1+x)^{p^k} \equiv 1+x^{p^k} \pmod{p}$.
- $(1+x)^{38} \equiv (1+x^{27})(1+x^9)(1+x)^2 \equiv (1+x^9)(1+x^{27})(1+2x+x^2)$ (mod 3). (mod 3).
- Therefore, we have $N_1 = 8$, $N_2 = 4$, and hence $N_1 N_2 = 4$.

э.

• From the small cases, it seems writing 38 in base 3 should be fruitful.

(a) The fact that $(a + b)^p \equiv a^p + b^p \pmod{p}$ should be the key.

Proof.

- 38 = 27 + 9 + 2.
- (1 + x)^{p^k} \equiv 1 + x^{p^k} (mod p).
- $(1+x)^{38} \equiv (1+x^{27})(1+x^9)(1+x)^2 \equiv (1+x^9)(1+x^{27})(1+2x+x^2)$ (mod 3). (mod 3).
- Therefore, we have $N_1 = 8$, $N_2 = 4$, and hence $N_1 N_2 = 4$.

프 (프) -

From the small cases, it seems writing 38 in base 3 should be fruitful.

3 The fact that $(a + b)^p \equiv a^p + b^p \pmod{p}$ should be the key.

Proof.

$$38 = 27 + 9 + 2.$$

(a)
$$(1+x)^{p^k} \equiv 1+x^{p^k} \pmod{p}$$
.

- $(1+x)^{38} \equiv (1+x^{27})(1+x^9)(1+x)^2 \equiv (1+x^9)(1+x^{27})(1+2x+x^2)$ (mod 3). (mod 3).
- ④ Therefore, we have $N_1 = 8$, $N_2 = 4$, and hence $N_1 N_2 = 4$.

글 문 문 글 문 문

From the small cases, it seems writing 38 in base 3 should be fruitful.

3 The fact that $(a + b)^p \equiv a^p + b^p \pmod{p}$ should be the key.

Proof.

- 38 = 27 + 9 + 2.
- (2) $(1+x)^{p^{\kappa}} \equiv 1+x^{p^{\kappa}} \pmod{p}$.
- $(1+x)^{38} \equiv (1+x^{27})(1+x^9)(1+x)^2 \equiv (1+x^9)(1+x^{27})(1+2x+x^2)$ (mod 3).
- ④ Therefore, we have $N_1 = 8, N_2 = 4$, and hence $N_1 N_2 = 4$.

→ Ξ →
Idea.

From the small cases, it seems writing 38 in base 3 should be fruitful.

3 The fact that $(a + b)^p \equiv a^p + b^p \pmod{p}$ should be the key.

Proof.

- 38 = 27 + 9 + 2.
- 2 $(1+x)^{p^k} \equiv 1+x^{p^k} \pmod{p}$.
- $(1+x)^{38} \equiv (1+x^{27})(1+x^9)(1+x)^2 \equiv (1+x^9)(1+x^{27})(1+2x+x^2) \pmod{3}.$
- ④ Therefore, we have $N_1 = 8, N_2 = 4$, and hence $N_1 N_2 = 4$.

Idea.

• From the small cases, it seems writing 38 in base 3 should be fruitful.

2 The fact that $(a + b)^p \equiv a^p + b^p \pmod{p}$ should be the key.

Proof.

< 注→ < 注→ …

Idea.

From the small cases, it seems writing 38 in base 3 should be fruitful.

2 The fact that $(a + b)^p \equiv a^p + b^p \pmod{p}$ should be the key.

Proof.

$$38 = 27 + 9 + 2.$$

2
$$(1+x)^{p^k} \equiv 1+x^{p^k} \pmod{p}$$
.

- (1+x)³⁸ \equiv (1+x²⁷)(1+x⁹)(1+x)² \equiv (1+x⁹)(1+x²⁷)(1+2x+x²) (mod 3).
- Therefore, we have $N_1 = 8$, $N_2 = 4$, and hence $N_1 N_2 = 4$.

Food for Thoughts

What is the total number of odd coefficients in the 100th row of the Pascal Triangle? [The first row and second row of the Pascal Triangle is 1 1 and 1 2 1 respectively.]

Food for Thoughts

Suppose

$$\mathsf{A} = \begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{pmatrix},$$

and let p be a prime. What is the total number of solutions to $A^2 \equiv A \pmod{p}$?

글 > : < 글 > : :

For the equation $y^{37} = x^3 + 11$. Show that the equation is solvable mod p for all primes p < 100.

Before solving the problem, let me tell you how I came up with this problem.

- Numbers 3 and 37 are completely artificial.
- The number 11 serves the purpose to eliminate the possibility that there could be a trivial or simple-to-fine global solution. (i.e. an integer solution to the equation)
- I had the mindset to kill the people who like to brute force.
- I like to give "false hope" to the students who like to brute force, and therefore the number "100" is chosen. (after all, there are only 25 primes to check.)
- However, the brute-force-group should ran into trouble after a while (i.e. after the first 10 primes or so ... I mean, computing the 37th power of a number mod a prime p is really not that easy.)

・ 同 ト ・ ヨ ト ・ ヨ ト

For the equation $y^{37} = x^3 + 11$. Show that the equation is solvable mod p for all primes p < 100.

Before solving the problem, let me tell you how I came up with this problem.

Numbers 3 and 37 are completely artificial.

- The number 11 serves the purpose to eliminate the possibility that there could be a trivial or simple-to-fine global solution. (i.e. an integer solution to the equation)
- I had the mindset to kill the people who like to brute force.
- I like to give "false hope" to the students who like to brute force, and therefore the number "100" is chosen. (after all, there are only 25 primes to check.)
- However, the brute-force-group should ran into trouble after a while (i.e. after the first 10 primes or so ... I mean, computing the 37th power of a number mod a prime p is really not that easy.)

・ 同 ト ・ ヨ ト ・ ヨ ト

For the equation $y^{37} = x^3 + 11$. Show that the equation is solvable mod p for all primes p < 100.

Before solving the problem, let me tell you how I came up with this problem.

- Numbers 3 and 37 are completely artificial.
- Phe number 11 serves the purpose to eliminate the possibility that there could be a trivial or simple-to-fine global solution. (i.e. an integer solution to the equation)
- I had the mindset to kill the people who like to brute force.
- I like to give "false hope" to the students who like to brute force, and therefore the number "100" is chosen. (after all, there are only 25 primes to check.)
- However, the brute-force-group should ran into trouble after a while (i.e. after the first 10 primes or so ... I mean, computing the 37th power of a number mod a prime p is really not that easy.)

For the equation $y^{37} = x^3 + 11$. Show that the equation is solvable mod p for all primes p < 100.

Before solving the problem, let me tell you how I came up with this problem.

- Numbers 3 and 37 are completely artificial.
- Provide the purpose to eliminate the possibility that there could be a trivial or simple-to-fine global solution. (i.e. an integer solution to the equation)
- **③** I had the mindset to kill the people who like to brute force.
- I like to give "false hope" to the students who like to brute force, and therefore the number "100" is chosen. (after all, there are only 25 primes to check.)
- However, the brute-force-group should ran into trouble after a while (i.e. after the first 10 primes or so ... I mean, computing the 37th power of a number mod a prime p is really not that easy.)

- 小田 ト ・ ヨ ト - - ヨ

For the equation $y^{37} = x^3 + 11$. Show that the equation is solvable mod p for all primes p < 100.

Before solving the problem, let me tell you how I came up with this problem.

- Numbers 3 and 37 are completely artificial.
- The number 11 serves the purpose to eliminate the possibility that there could be a trivial or simple-to-fine global solution. (i.e. an integer solution to the equation)
- I had the mindset to kill the people who like to brute force.
- I like to give "false hope" to the students who like to brute force, and therefore the number "100" is chosen. (after all, there are only 25 primes to check.)
- However, the brute-force-group should ran into trouble after a while (i.e. after the first 10 primes or so ... I mean, computing the 37th power of a number mod a prime p is really not that easy.)

- 小田 ト ・ ヨ ト - - ヨ

For the equation $y^{37} = x^3 + 11$. Show that the equation is solvable mod p for all primes p < 100.

Before solving the problem, let me tell you how I came up with this problem.

- Numbers 3 and 37 are completely artificial.
- Provide the purpose to eliminate the possibility that there could be a trivial or simple-to-fine global solution. (i.e. an integer solution to the equation)
- **③** I had the mindset to kill the people who like to brute force.
- I like to give "false hope" to the students who like to brute force, and therefore the number "100" is chosen. (after all, there are only 25 primes to check.)
- However, the brute-force-group should ran into trouble after a while (i.e. after the first 10 primes or so ... I mean, computing the 37th power of a number mod a prime p is really not that easy.)

(日本) (日本) (日本) 日

Suppose p and q are primes. Then every integer a is a qth power mod p if gcd(p-1,q) = 1. In other words, if gcd(p-1,q) = 1, then the equation $x^q \equiv a \pmod{p}$ is solvable for all a.

Example

Since gcd(5-1,3) = 1. Every integer is a cube mod 5. Indeed, $1^3 \equiv 1 \pmod{5}$, $2^3 \equiv 8 \equiv 3 \pmod{5}$, $3^3 \equiv (-2)^3 \equiv -8 \equiv 2 \pmod{5}$, $4^3 \equiv (-1)^3 \equiv -4 \equiv 4 \pmod{5}$

▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

Example

For the equation $y^{37} = x^3 + 11$. Show that the equation is solvable mod p for all primes p < 100.

Proof.

1 If
$$(p-1,3) = 1$$
 or $(p-1,37) = 1$,

e then the cubing lemma and the 37th power lemma says the equation is solvable since everything is either a cube or a 37th power.

Therefore, we only need to check primes p such that

 $p \equiv 1 \pmod{3}$ and $p \equiv 1 \pmod{37}$.

• i.e. $p \equiv 1 \pmod{111}$.

I However, there is no such prime less than 100. We are done.

- ∢ ⊒ →

Example

For the equation $y^{37} = x^3 + 11$. Show that the equation is solvable mod p for all primes p < 100.

Proof.

• If
$$(p-1,3) = 1$$
 or $(p-1,37) = 1$,

then the cubing lemma and the 37th power lemma says the equation is solvable since everything is either a cube or a 37th power.

Therefore, we only need to check primes p such that

 $p \equiv 1 \pmod{3}$ and $p \equiv 1 \pmod{37}$.

• i.e. $p \equiv 1 \pmod{111}$.

I However, there is no such prime less than 100. We are done.

- ∢ ⊒ →

Example

For the equation $y^{37} = x^3 + 11$. Show that the equation is solvable mod p for all primes p < 100.

Proof.

• If (p-1,3) = 1 or (p-1,37) = 1,

e then the cubing lemma and the 37th power lemma says the equation is solvable since everything is either a cube or a 37th power.

Therefore, we only need to check primes p such that

 $p \equiv 1 \pmod{3}$ and $p \equiv 1 \pmod{37}$.

• i.e. $p \equiv 1 \pmod{111}$.

I however, there is no such prime less than 100. We are done.

글 > - + 글 >

Example

For the equation $y^{37} = x^3 + 11$. Show that the equation is solvable mod p for all primes p < 100.

Proof.

• If (p-1,3) = 1 or (p-1,37) = 1,

e then the cubing lemma and the 37th power lemma says the equation is solvable since everything is either a cube or a 37th power.

Therefore, we only need to check primes p such that

 $p \equiv 1 \pmod{3}$ and $p \equiv 1 \pmod{37}$.

• i.e. $p \equiv 1 \pmod{111}$

I However, there is no such prime less than 100. We are done.

Example

For the equation $y^{37} = x^3 + 11$. Show that the equation is solvable mod p for all primes p < 100.

Proof.

• If (p-1,3) = 1 or (p-1,37) = 1,

e then the cubing lemma and the 37th power lemma says the equation is solvable since everything is either a cube or a 37th power.

Therefore, we only need to check primes p such that

 $p \equiv 1 \pmod{3}$ and $p \equiv 1 \pmod{37}$.

 \bigcirc i.e. $p \equiv 1 \pmod{111}$.

B However, there is no such prime less than 100. We are done.

Example

For the equation $y^{37} = x^3 + 11$. Show that the equation is solvable mod p for all primes p < 100.

Proof.

• If (p-1,3) = 1 or (p-1,37) = 1,

e then the cubing lemma and the 37th power lemma says the equation is solvable since everything is either a cube or a 37th power.

Therefore, we only need to check primes p such that

 $p \equiv 1 \pmod{3}$ and $p \equiv 1 \pmod{37}$.

 \bigcirc i.e. $p \equiv 1 \pmod{111}$.

5 However, there is no such prime less than 100. We are done.

Suppose p and q are primes. Then every integer a is a qth power mod p if gcd(p-1,q) = 1. In other words, if gcd(p-1,q) = 1, then the equation $x^q \equiv a \pmod{p}$ is solvable for all a.

Proof.

• Suppose
$$gcd(p-1,q) = 1$$
.

3 Then there exists integers x and y such that x(p-1) + qy = 1.

Therefore,

$$a^1 \equiv a^{\times (p-1)+qy} \equiv a^{p(x-1)} \times a^{qy} \equiv a^{qy}$$

by Fermats little theorem.

If the equation $a = (a^y)^q$ is a q-th power mod p and we are done.

프 > + 프 >

Suppose p and q are primes. Then every integer a is a qth power mod p if gcd(p-1,q) = 1. In other words, if gcd(p-1,q) = 1, then the equation $x^q \equiv a \pmod{p}$ is solvable for all a.

Proof.

• Suppose
$$gcd(p-1,q) = 1$$
.

② Then there exists integers x and y such that x(p-1) + qy = 1.

Therefore,

$$a^1 \equiv a^{\times (p-1)+q_y} \equiv a^{p(x-1)} \times a^{q_y} \equiv a^{q_y}$$

by Fermats little theorem.

If the equation $a = (a^y)^q$ is a q-th power mod p and we are done.

프 > + 프 >

Suppose p and q are primes. Then every integer a is a qth power mod p if gcd(p-1,q) = 1. In other words, if gcd(p-1,q) = 1, then the equation $x^q \equiv a \pmod{p}$ is solvable for all a.

Proof.

• Suppose
$$gcd(p-1,q) = 1$$
.

3 Then there exists integers x and y such that x(p-1) + qy = 1.

Therefore

$$a^1\equiv a^{ imes (p-1)+qy}\equiv a^{p(imes -1)} imes a^{qy}\equiv a^{qy}$$

by Fermats little theorem.

If the equation $a = (a^y)^q$ is a q-th power mod p and we are done.

A B + A B +
 A

Suppose p and q are primes. Then every integer a is a qth power mod p if gcd(p-1,q) = 1. In other words, if gcd(p-1,q) = 1, then the equation $x^q \equiv a \pmod{p}$ is solvable for all a.

Proof.

• Suppose
$$gcd(p-1,q) = 1$$
.

3 Then there exists integers x and y such that x(p-1) + qy = 1.

O Therefore,

$$a^1 \equiv a^{\times (p-1)+qy} \equiv a^{p(x-1)} \times a^{qy} \equiv a^{qy}$$

by Fermats little theorem.

If the equation $a = (a^y)^q$ is a q-th power mod p and we are done.

Suppose p and q are primes. Then every integer a is a qth power mod p if gcd(p-1,q) = 1. In other words, if gcd(p-1,q) = 1, then the equation $x^q \equiv a \pmod{p}$ is solvable for all a.

Proof.

Suppose
$$gcd(p-1,q) = 1$$
.

3 Then there exists integers x and y such that x(p-1) + qy = 1.

O Therefore,

$$a^1 \equiv a^{\times (p-1)+qy} \equiv a^{p(x-1)} \times a^{qy} \equiv a^{qy}$$

by Fermats little theorem.

• Hence $a = (a^{y})^{q}$ is a q-th power mod p and we are done.

Is it possible to find infinitely many primes that ends in 2010?

Answer.	
INO	
You cannot even find one prime that ends in 2010.	

Question

Is it possible to find infinitely many primes that ends in 2011? [Note that 2011 is a prime number.]

Question

Is it possible to find infinitely many primes that ends in 123?

- ∢ ≣ ▶

Is it possible to find infinitely many primes that ends in 2010?

Answer.	
NO	
You cannot even find one prime that ends in 2010.	

Question

Is it possible to find infinitely many primes that ends in 2011? [Note that 2011 is a prime number.]

Question

Is it possible to find infinitely many primes that ends in 123?

- ∢ ≣ ▶

Is it possible to find infinitely many primes that ends in 2010?

Answer.

INO...

2 You cannot even find one prime that ends in 2010.

Question

Is it possible to find infinitely many primes that ends in 2011? [Note that 2011 is a prime number.]

Question

Is it possible to find infinitely many primes that ends in 123?

글 > : < 글 >

The answer is YES due to the following theorem.

Theorem (Dirichlet)

Suppose k and a are integers that are relatively prime. Then the sequence $\{kn + a\}$ contains infinitely many primes. In other words, there are infinitely many primes such that $p \equiv a \pmod{k}$.

Solution.

- Let $k = 10^4$ and a = 2011, then gcd(k, a) = 1.
- By Dirichlet's theorem, we have the sequence {10000n + 2011} contains infinitely many primes.
- Likewise, since gcd(1000, 123) = 1, Dirichlet's theorem says $\{1000n + 123\}$ contains infinitely many primes.

By a similar argument, we have the following theorem

Theorem

The answer is YES due to the following theorem.

Theorem (Dirichlet)

Suppose k and a are integers that are relatively prime. Then the sequence $\{kn + a\}$ contains infinitely many primes. In other words, there are infinitely many primes such that $p \equiv a \pmod{k}$.

Solution.

• Let $k = 10^4$ and a = 2011, then gcd(k, a) = 1.

By Dirichlet's theorem, we have the sequence {10000n + 2011} contains infinitely many primes.

Likewise, since gcd(1000, 123) = 1, Dirichlet's theorem says {1000n + 123} contains infinitely many primes.

By a similar argument, we have the following theorem

Theorem

The answer is YES due to the following theorem.

Theorem (Dirichlet)

Suppose k and a are integers that are relatively prime. Then the sequence $\{kn + a\}$ contains infinitely many primes. In other words, there are infinitely many primes such that $p \equiv a \pmod{k}$.

Solution.

• Let $k = 10^4$ and a = 2011, then gcd(k, a) = 1.

By Dirichlet's theorem, we have the sequence {10000n + 2011} contains infinitely many primes.

Likewise, since gcd(1000, 123) = 1, Dirichlet's theorem says $\{1000n + 123\}$ contains infinitely many primes.

By a similar argument, we have the following theorem

Theorem

The answer is YES due to the following theorem.

Theorem (Dirichlet)

Suppose k and a are integers that are relatively prime. Then the sequence $\{kn + a\}$ contains infinitely many primes. In other words, there are infinitely many primes such that $p \equiv a \pmod{k}$.

Solution.

- Let $k = 10^4$ and a = 2011, then gcd(k, a) = 1.
- By Dirichlet's theorem, we have the sequence {10000n + 2011} contains infinitely many primes.
- Solution Likewise, since gcd(1000, 123) = 1, Dirichlet's theorem says $\{1000n + 123\}$ contains infinitely many primes.

By a similar argument, we have the following theorem

Theorem

Given gcd(k, a) = 1. If we randomly choose a prime number p, what is the probability that $p \equiv a \pmod{k}$?

The answer is given by the following

Theorem (Chebotarev's Density Theorem)

Given gcd(k, a) = 1. If we randomly choose a prime number p, what is the probability that $p \equiv a \pmod{k}$ is $\frac{1}{\varphi(k)}$.

What is $\varphi(k)$?

Definition (Euler φ function)

Let $\varphi(m) = \{$ number of integers, *a* less than *m* and relatively prime to *m* $\}$. i.e. $\varphi(m) = \{a \in \mathbb{N} \mid (a, m) = 1 \text{ and } a < m. \}.$

Example

- $\varphi(4) = 2$, since 1,3 are the integers less than 4 and are relatively prime to 4.
- (a) $\varphi(5) = 4$, viz. 1,2,3,4 are less than 5 and are relatively prime to 5.
- (a) $\varphi(10) = 4$, namely 1, 3, 7, 9 are less than 10 are are relatively prime to 10.

(B) < B)</p>

What is $\varphi(k)$?

Definition (Euler φ function)

Let $\varphi(m) = \{$ number of integers, *a* less than *m* and relatively prime to *m* $\}$. i.e. $\varphi(m) = \{a \in \mathbb{N} \mid (a, m) = 1 \text{ and } a < m. \}.$

Example

- $\varphi(4) = 2$, since 1,3 are the integers less than 4 and are relatively prime to 4.
- (a) $\varphi(5) = 4$, viz. 1,2,3,4 are less than 5 and are relatively prime to 5.
- (a) $\varphi(10) = 4$, namely 1, 3, 7, 9 are less than 10 are are relatively prime to 10.

What is $\varphi(k)$?

Definition (Euler φ function)

Let $\varphi(m) = \{$ number of integers, *a* less than *m* and relatively prime to *m* $\}$. i.e. $\varphi(m) = \{a \in \mathbb{N} \mid (a, m) = 1 \text{ and } a < m. \}.$

Example

- $\varphi(4) = 2$, since 1,3 are the integers less than 4 and are relatively prime to 4.
- **2** $\varphi(5) = 4$, viz. 1, 2, 3, 4 are less than 5 and are relatively prime to 5.
- (10) = 4, namely 1,3,7,9 are less than 10 are are relatively prime to 10.

What is $\varphi(k)$?

Definition (Euler φ function)

Let $\varphi(m) = \{$ number of integers, *a* less than *m* and relatively prime to *m* $\}$. i.e. $\varphi(m) = \{a \in \mathbb{N} \mid (a, m) = 1 \text{ and } a < m. \}.$

Example

- $\varphi(4) = 2$, since 1,3 are the integers less than 4 and are relatively prime to 4.
- **2** $\varphi(5) = 4$, viz. 1, 2, 3, 4 are less than 5 and are relatively prime to 5.
- $(0) \varphi(10) = 4$, namely 1, 3, 7, 9 are less than 10 are are relatively prime to 10.

Theorem (Formula for $\varphi(m)$)

Let $m = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$, where the p_i are distinct prime factors of m then:

$$arphi(m) = m \prod_{i=1}^k \left(1 - rac{1}{p_i}
ight) = m \left(1 - rac{1}{p_1}
ight) imes \cdots imes \left(1 - rac{1}{p_k}
ight).$$

Example

- Ince $1000 = 2^3 \times 5^3$, we have $\varphi(1000) = 1000 \times (1 1/2)(1 1/5) = 400$.
- Since $10000 = 2^4 \times 5^4$, we have $\varphi(10000) = 10000 \times (1 1/2)(1 1/5) = 4000$

This gives

Theorem

There are infinitely many primes p that ends in 123 and among all the primes, the probability of choosing a prime that ends in 123 is $\frac{1}{\varphi(1000)} = \frac{1}{400}$.

向 ト イヨ ト イヨ ト

Theorem (Formula for $\varphi(m)$)

Let $m = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$, where the p_i are distinct prime factors of m then:

$$arphi(m) = m \prod_{i=1}^k \left(1 - rac{1}{p_i}
ight) = m \left(1 - rac{1}{p_1}
ight) imes \cdots imes \left(1 - rac{1}{p_k}
ight).$$

Example

Since $1000 = 2^3 \times 5^3$, we have $\varphi(1000) = 1000 \times (1 - 1/2)(1 - 1/5) = 400$.

Since $10000 = 2^4 \times 5^4$, we have $\varphi(10000) = 10000 \times (1 - 1/2)(1 - 1/5) = 4000$

This gives

Theorem

There are infinitely many primes p that ends in 123 and among all the primes, the probability of choosing a prime that ends in 123 is $\frac{1}{\varphi(1000)} = \frac{1}{400}$.
Theorem (Formula for $\varphi(m)$)

Let $m = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$, where the p_i are distinct prime factors of m then:

$$arphi(m) = m \prod_{i=1}^k \left(1 - rac{1}{p_i}
ight) = m \left(1 - rac{1}{p_1}
ight) imes \cdots imes \left(1 - rac{1}{p_k}
ight).$$

Example

- Since $1000 = 2^3 \times 5^3$, we have $\varphi(1000) = 1000 \times (1 1/2)(1 1/5) = 400$.
- Since $10000 = 2^4 \times 5^4$, we have $\varphi(10000) = 10000 \times (1 1/2)(1 1/5) = 4000$.

This gives

Theorem

There are infinitely many primes p that ends in 123 and among all the primes, the probability of choosing a prime that ends in 123 is $\frac{1}{\varphi(1000)} = \frac{1}{400}$.

Theorem (Fermat's Last Theorem)

Suppose $n \ge 3$. If x, y, z are integers and $x^n + y^n = z^n$, then xyz = 0.

For the proof, we shall do it next time!

Food for Thoughts

Find all integer solutions to $3x^2 + 1 = 4y^3$.

→ < ∃ →</p>

э

I would like to thank the HKAGE (Hong Kong Academy for Gifted Education) for the invitation and thank you all for coming!

▶ ★ 臣 ▶

-

3